Concours Communs Marocain - Session 2009

Corrigé de l'épreuve d'algèbre

Polynôme d'interpolation de Lagrange. Approximation au sens de moindres carrées Corrigé par M.TARQI

$1^{\grave{e}re}$ Partie : Étude de l'application f_m

- 1. R étant un polynôme de degré inférieure ou égal à n, admettant n+1 racines distintes, donc R est le polynôme nul.
- 2. Soient $P, Q \in \mathcal{P}_m$ et $\lambda \in \mathbb{R}$, alors on a :

$$f_m(P + \lambda Q) = ((P + \lambda Q)(x_0), ..., (P + \lambda Q)(x_n))$$

= $(P(x_0), ..., P(x_n)) + \lambda(Q(x_0), ..., Q(x_n))$
= $f_m(P) + \lambda f_m(Q)$

Donc f_m est une application linéaire.

- 3. (a) Il est clair que $\{Q\pi/Q \in \mathcal{P}_{m-n-1}\}\subset \ker f_m$, puisque $Q\pi \in \mathcal{P}_m$ et $f_m(Q\pi)=0$. D'autre part, si $P\in \ker f_m$, alors $x_0,x_1,...,x_n$ seront des racines de P, donc il est divisible par π . Ainsi $\ker f=\{Q\pi/Q\in \mathcal{P}_{m-n-1}\}$.
 - (b) Soit $P \in \mathcal{P}_m$, alors il existe un couple unique (Q,R) de polynômes tels que $P = Q\pi + R$, avec R = 0 ou $\deg R \leq n$, et comme $Q\pi \in \ker f_m$ et $R \in \mathcal{P}_m$, alors

$$\mathcal{P}_m = \ker f_m \oplus \mathcal{P}_n$$
.

- (c) D'après la dérnière question, $\dim \ker f_m = m-n$. La famille $\{\pi, X\pi, ..., X^{m-n-1}\pi\}$ est une base de $\ker f_m$.
- (d) Toujours d'après la question (b) de cette partie, $\operatorname{rg} f_m = n + 1$, donc f_m est surjective puisque $\dim \mathbb{R}^{n+1} = n + 1$.
- 4. (a) Si $P \in \mathcal{P}_m$ tel que $f_m(P) = 0$, alors le polynôme P aura n+1 racines distinctes et comme $m \le n$, alors P = 0 et donc f_m est injective.
 - (b) $\operatorname{rg} f_m = \dim \mathcal{P}_m = m + 1$.
 - (c) f_m est surjective si et seulement si $\dim \mathcal{P}_m = \dim \mathbb{R}^{n+1}$, c'est-à-dire m = n.
- 5. (a) L'application

$$f_m: \mathcal{P}_n \longrightarrow \mathbb{R}^{n+1}$$

 $P \longmapsto (P(x_0), ..., P(x_n))$

étant bijective (m=n), donc pour tout élément $y=(y_0,y_1...,y_n)\in\mathbb{R}^{n+1}$, il existe un seul polynôme $P_y\in\mathcal{P}_n$ tel que $f_n(P_y)=(y_0,y_1,...,y_n)$.

- (b) i. D'après la définition des L_i , on a $L_i(x_i) = 1$ et $L_i(x_j) = 0$ si $i \neq j$.
 - ii. La famille $(L_1, L_2, ..., L_n)$ est une base de \mathcal{P}_n , comme image réciproque de la base canonique de \mathbb{R}^{n+1} , par l'isomorphisme f_n .
- (c) Posons

$$(y_0, y_1, ..., y_n) = \sum_{i=0}^{n} y_i \varepsilon_i$$

On aura alors,

$$P_y = \sum_{i=1}^{p} y_i f_n^{-1}(\varepsilon_i) = \sum_{i=1}^{p} y_i L_i.$$

Soit $P = \sum_{i=0}^{n} L_i$, alors $P(x_i) = 1$ pour tout $0 \le i \le n$, donc d'après la question 1. de cette partie P = 1, d'où :

$$\sum_{i=0}^{n} L_i = 1.$$

2ème partie : Problème aux moindres carrées

1. (a) Soit $y \in \text{Im } A$, alors il existe $x \in \mathcal{M}_{p,1}$ tel que y = Ax. Donc

$$< b - Au, y>_{p} = < b - Au, Ax>_{p} = t x^{t}A(b - Au) = 0,$$

ainsi b - Au est orthogonal à Im A.

Comme les vecteurs b-Au et Ax sont orthogonaux, alors d'après Pythagore, $\|b-Ax\|=\|b-Au\|+\|A(u-x)\|\geq \|b-Au\|$ et d'après la caractérisation de la projection $Au=P_{\operatorname{Im} A}(b)$.

(b) On a, pour tout $x \in \mathcal{M}_{q,1} \|b - Au\| \le \|b - Ax\| + \|Ax - Au\| \le \|b - Ax\|$, donc

$$||b - Au|| = \min\{||b - Ax||_p/x \in \mathcal{M}_{q,1}(\mathbb{R})\}$$

ce minimum est atteint pour tout vecteur $x \in \mathcal{M}_{q,1}(\mathbb{R})$ tel que Ax = Au.

- 2. On sait, d'après la question 1.(a) de cette partie, que b-Au est orthogonal à $\operatorname{Im}(A)$, c'est-à-dire $\forall x \in \mathcal{M}_{q,1}(\mathbb{R}) < b-Au$, $Ax>=^t x^t A(b-Au) = < x,^t Ab-^t AAu>= 0$, donc le vecteur ${}^t AAu-^t Ab$ est orthogonal à tous x de $\mathcal{M}_{p,1}(\mathbb{R})$, en particulier il est orthogonal à il même , c'est-à-dire $\|{}^t AAu-^t Ab\|=0$, ainsi ${}^t AAu=^t Ab$.
- 3. (a) Si $x \in \ker^t AA$, alors $\langle Ax, Ax \rangle_p = t^* x^t AAx = 0$.
 - (b) Il est clair que $\ker A \subset \ker^t AA$ et d'après la question précédente, si $x \in \ker^t AA$, alors $||Ax||_p^2 = 0$, donc Ax = 0 et par suite $x \in \ker A$, d'où l'égalité.
 - (c) $\operatorname{rg}({}^{t}A) = \operatorname{rg}(A) = p \dim \ker(A) = p \dim \ker({}^{t}AA) = \operatorname{rg}({}^{t}AA)$.
 - (d) Soit $y \in \operatorname{Im}^t AA$, donc il existe $x \in \mathcal{M}_{p,1}(\mathbb{R})$ tel que $y = {}^t AAx$, c'est-à-dire $y \in \operatorname{Im}^t A$, d'où l'inclusion demandée. Les deux assertions $\operatorname{rg}({}^t A) = \operatorname{rg}({}^t AA)$ et $\operatorname{Im}^t AA \subset \operatorname{Im}^t A$ entraînent $\operatorname{Im}^t A = \operatorname{Im}^t AA$.
- 4. (a) D'après l'étude précédente, le problème aux moindres carrés admet une solution si et seulement si il existe $u \in \mathcal{M}_{q,1}(\mathbb{R})$ tel que ${}^tAAu = {}^tAb$ c'est-à-dire le système ${}^tAAu = {}^tAb$ admet des solutions, ce qui est toujours possible, d'après la question 3.(c).
 - (b) Supposons $\ker A = \{0\}$ et soit u et v de tels ${}^tAAu = {}^tAb$ et ${}^tAAv = {}^tAb$, alors $u v \in \ker^t AA = \ker^t A = \{0\}$, donc v = u et par conséquent le poblème admet une solution unique.

3ème Partie: Approximation polynomiale au sens des moindres carrées

A. Étude dans le cas $m \ge n + 1$

1. On sait qu'il existe un unique polynôme $Q_0 \in \mathcal{P}_n$ tel que $f_n(Q_0) = (y_0, y_1, ..., y_n)$, c'est le polynôme $\sum_{i=0}^n y_i L_i$ défini dans la première partie. D'autre part $\mathcal{P}_n \subset \mathcal{P}_m$ et la restriction de f_m à \mathcal{P}_n n'est autre que f_n , alors on aura nécessairement

$$f_m(Q_0) = (y_0, y_1, ..., y_n).$$

2. On a $Q_0 \in \mathcal{P}_m$ et $\phi_m(Q_0) = 0$, donc $\lambda_m = 0$. D'autre part $\phi_m(P) = 0$ si et seulement si $P(x_i) = y_i$ pour tout entier i tel que $0 \le i \le n$, donc l'ensemble des polynômes de \mathcal{P}_m où le minimum est atteint est donc $\{P \in \mathcal{P}_m/f_m(P) = (y_0, y_1, ..., y_n)\}$

B. Étude dans le cas $m \leq n$

1. (a) tAA est une matrice carée d'ordre m+1 et son coefficient d'indice (i,j) est donné par :

$$\sum_{k=0}^{n} x_k^i x_k^j.$$

(b) On a un sous déteminant maximal non nul d'ordre m+1 extrait de A, à savoir

$$\begin{vmatrix} 1 & x_0 & \cdots & x_0^m \\ 1 & x_1 & \cdots & x_1^m \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & \cdots & x_m^m \end{vmatrix} = \prod_{0 \le j < i \le m} (x_i - x_j)$$

donc $\operatorname{rg} A = m + 1$.

- (c) On sait que $\operatorname{rg}^t AA = \operatorname{rg}^t A = \operatorname{rg} A = m+1$, donc ${}^t AA$ est inversible.
- 2. (a) On a évidement

$$AV_p = {}^{t} (P(x_0), P(x_1), ..., P(x_n).$$

(b) On calcule

$$||b - AV_p||_{n+1}^2 = ||(y_0 - P(x_0), ..., y_n - P(x_n))||_{n+1}^2 = \sum_{i=0}^n (y_i - P(x_i))^2 = \phi_m(P).$$

3. (a) D'après la partie précédente, on sait qu'il existe, puisque tAA est inversible, un unique vecteur $U=(c_0,c_1,...,c_m)$ tel que

$$||b - AU||_{n+1}^2 = \min\{||b - AX||_{n+1}^2/x \in \mathcal{M}_{m+1,1}(\mathbb{R})\}\$$

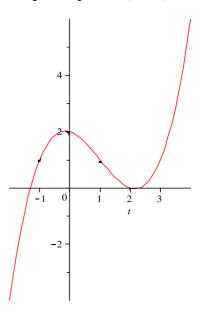
donc le polynôme $P_0 = \sum\limits_{k=0}^m c_k X^k$ répond à la question.

- (b) D'après la question précédente le vecteur $U = V_{P_0}$ est l'unique solution du système linéaire ${}^tAAZ = {}^tAb$.
- (c) $\lambda_m = \Phi_m(P_0)$.
- 4. Application

(a) On trouve
$$A = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \end{pmatrix}$$
 et ${}^tAA = \begin{pmatrix} 4 & 2 & 6 & 8 \\ 2 & 6 & 8 & 18 \\ 6 & 8 & 18 & 32 \\ 8 & 18 & 32 & 66 \end{pmatrix}$

(b) On a
$${}^tAb = \begin{pmatrix} 4 \\ 0 \\ 2 \\ 0 \end{pmatrix}$$

- (c) On trouve $U = (2, \frac{-1}{3}, -1, \frac{1}{3})$.
- (d) $P_0(X) = 2 \frac{1}{3}X X^2 + \frac{1}{3}X^3$ et $\lambda_3 = ||b Au||_4^2 = 0$.
- (e) Le graphe de la fonction $t \longmapsto P_0(t)$ et les quatre points (x_i, y_i) .



• • • • • • • • • • •

M.Tarqi-Centre Ibn Abdoune des classes préparatoires-Khouribga. Maroc E-mail : medtarqi@yahoo.fr